

General Certificate of Education Advanced Level Examination
January 2011

Mathematics

MFP3

Unit Further Pure 3

Monday 24 January 20119.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1
The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x+\sqrt{y}
$$

and

$$
y(3)=4
$$

Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(3.1)$, giving your answer to three decimal places. (5 marks)

2 (a) Find the values of the constants p and q for which $p \sin x+q \cos x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+5 y=13 \cos x \tag{3marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.

3 A curve C has polar equation $r(1+\cos \theta)=2$.
(a) Find the cartesian equation of C, giving your answer in the form $y^{2}=\mathrm{f}(x)$. (5 marks)
(b) The straight line with polar equation $4 r=3 \sec \theta$ intersects the curve C at the points P and Q. Find the length of $P Q$.
(4 marks)

4 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{2}{x} y=2 x^{3} \mathrm{e}^{2 x}
$$

given that $y=\mathrm{e}^{4}$ when $x=2$. Give your answer in the form $y=\mathrm{f}(x)$. (9 marks)

5 (a) Write $\frac{4}{4 x+1}-\frac{3}{3 x+2}$ in the form $\frac{C}{(4 x+1)(3 x+2)}$, where C is a constant.
(b) Evaluate the improper integral

$$
\int_{1}^{\infty} \frac{10}{(4 x+1)(3 x+2)} \mathrm{d} x
$$

showing the limiting process used and giving your answer in the form $\ln k$, where k is a constant.

6 The diagram shows a sketch of a curve C.

The polar equation of the curve is

$$
r=2 \sin 2 \theta \sqrt{\cos \theta}, \quad 0 \leqslant \theta \leqslant \frac{\pi}{2}
$$

Show that the area of the region bounded by C is $\frac{16}{15}$.

7 (a) Write down the expansions in ascending powers of x up to and including the term in x^{3} of:
(i) $\cos x+\sin x$;
(ii) $\ln (1+3 x)$.
(b) It is given that $y=\mathrm{e}^{\tan x}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(1+\tan x)^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$. (5 marks)
(ii) Find the value of $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ when $x=0$.
(iii) Hence, by using Maclaurin's theorem, show that the first four terms in the expansion, in ascending powers of x, of $\mathrm{e}^{\tan x}$ are

$$
1+x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}
$$

(2 marks)
(c) Find

$$
\lim _{x \rightarrow 0}\left[\frac{\mathrm{e}^{\tan x}-(\cos x+\sin x)}{x \ln (1+3 x)}\right]
$$

8 (a) Given that $x=\mathrm{e}^{t}$ and that y is a function of x, show that

$$
\begin{equation*}
x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \tag{2marks}
\end{equation*}
$$

(b) Hence show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=2 \ln x
$$

into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+4 y=2 t
$$

(c) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+4 y=2 t \tag{6marks}
\end{equation*}
$$

(d) Hence solve the differential equation $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-3 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=2 \ln x$, given that $y=\frac{3}{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$ when $x=1$.

